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Abstract--Probabilistic multiphase flow equations are used to analyse heat transfer between a pipe wall 
and a gas-solids suspension flowing inside. This analysis shows that, in the same way as self-similar 
concentration and velocity profiles are solutions to the hydrodynamic equations for dilute suspensions, 
self-similar temperature profiles constitute solutions to the energy equations. These solutions, in turn, allow 
the derivation of the general form of the variation in suspension heat transfer coefficient as a function of 
solids loading in gas-solids suspension flows. The predicted variation is consistent with experimental data 

available in the literature. 

1. INTRODUCTION 

INTEREST in the heat transfer behaviour of flowing 
gas-solids suspensions originated in the 1950s when 
graphite suspensions were being considered for use as 
cooling media in nuclear reactors. The early work 
done in this area consisted of developing correlations 
between the suspension-to-wall heat transfer co- 

efficients and suspension properties. As applications 

grew to include transport reactors and circulating 
fluid beds, experimental studies continued and early 
attempts at providing a theoretical foundation for 
the understanding of gas-solids heat transfer were 
advanced. One of the difficulties encountered in devel- 

oping both generalized correlations and consistent 
theoretical approaches to this problem was a curious 
observation of how heat transfer coefficients varied 

with solids loading ratio : in some cases, coefficients 
increased monotonically with loading ratio ; in others, 
coefficients decreased initially as solids were added to 
the flowing gas stream and then increased after pass- 

ing through a minimum; in still other cases, the 
decrease with loading ratio was monotonic. 

The probabilistic multiphase flow equations [l] 
were developed in order to provide a rigorous theor- 
etical framework for the understanding of gas-solids 
suspension hydrodynamics and heat transfer. In an 
earlier paper [2], these equations were applied to the 
hydrodynamics of dilute, fully developed, vertically 

t Present address : DuPont Canada Inc., Research Centre, 
p.0. Box 5000, Kingston, Ontario K7L 5A5, Canada. 

flowing suspensions. This analysis led to the identi- 

fication of a ‘similar profiles’ flow regime where 
solids velocity and concentration profiles are self-simi- 

lar. This, in turn. explained certain characteristics of 
the pressure drop behaviour of vertically flowing sus- 
pensions. In this paper, the properties of the tem- 
perature fields in the similar profiles regime will be 

examined and a general heat transfer equation de- 
scribing the variations of the wall-to-suspension heat 
transfer coefficient with the loading ratio will be 
derived. 

2. PREVIOUS WORK 

The earliest published study on heat transfer be- 

tween flowing gas-solids suspensions and pipe walls 

is that of Farbar and Morley [3]. These authors 

studied 50 /*rn catalyst particles and found the ratio 
of suspension heat transfer coefficient over that of the 
gas alone flowing at the same superficial gas velocity 
varied with the solids loading ratio (W,/Wa to the 

0.45 power. Depew and Farbar [4] found that solids 
had little effect on heat transfer coefficients for 200 
pm glass beads below loading ratios of 7. Using 30 

pm glass beads however, the same authors observed 
there to be no effect on heat transfer coefficients up 
to loading ratios of 0.5. Between 0.5 and 3.0 however, 
heat transfer coefficients decreased followed by large 
increase thereafter. This latter observation, whereby 
coefficients pass through a minimum somewhere in 
the range 0.5 < W,/ W, < 3.0 was later substantiated 
by numerous workers in a wide variety of situations 
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NOMENCLATURE 

(I, II compound shape factors defined by i radial heat transfer fluxes defined by 
equation (50) equations (27) and (28) [W m ‘1 

C heat capacity [J kg ’ K ‘1 0 temperature difference [K] 

1’ reduced conccnlration profile i thermal conductivity [W m ’ K ‘1 
G velocity defined in equation ( 17) A dimensionless shape factors defined by 

[ms ‘I equations (45) and (46) 
il heat transfer coefficient [W rn-~ ’ K ‘1 P phase density [kg m ‘1 
k’ axial temperature gradient [K m ‘1 (P heat flux [W m ‘I. 

0 order of magnitude 

Q rate of heat transfer per unit volume of Subscripts 
suspension [W m ‘1 f fluid phase 

r radial coordinate [m] i,i tensor notation 
R pipe radius [m] I interfdcial mean 

t time [s] m mixture 
T temperature [K] Mm mixed mean (for suspension temperature) 
L’ superficial gas velocity [m s ‘] P phase p 
C’ velocity [m s- ‘1 s solids phase 
W mass flow rate [kgs ‘1 W at the pipe wall. 
.Y axial coordinate [m] 
Y defined by equation (51). Superscripts 

f fluid phase 

Greek symbols I interfacial mean 

c( phase presence probability P phase p 
I- solids loading times heat capacity ratio S solids phase 

(equation (25)) 0 reference flow 

i: velocilyytemperature cofluctuation I perturbation flow 

vector [m K s ‘1 mean. 

(e.g. refs. [5-91). There are exceptions to be found 
however in the works of Danziger [IO] who found 
monotonic increases as a function of loading ratio for 
cracking catalyst suspensions. Kim and Seader [I l] 

found monotonic decreases in coefficients as a func- 
tion of loading ratio at high Reynolds numbers; they 

found constant coefficients at Reynolds nvmbers 
below 23 000. 

Many intuitive explanations have been put forth 
for this apparently inconsistent behaviour : particles 
are said to thin the viscous sub-layer in cases where 
coefficients increase ; particles are said to dampen tur- 
bulent diffusive exchanges in cases where coefficients 

fall. One of the few attempts to treat this problem 
theoretically for isothermal pipe wails was by Tien 

[ 121 whose analysis succeeded in predicting that solids 
have the effect of increasing thermal entry lengths and 
therefore increasing overall coefficients in short pipes. 
Tien’s equations were later used by Depew and Farbar 
[4] for uniform wall heat fluxes. They managed 
to predict the presence of a minimum at low solids 
loading but predicted no change compared to the 
coeficient of the gas alone at higher loadings. Use 
of Tien’s equations for fully developed flow required 
making a large number of simplifying assumptions, 
including uniform solids concentration profiles and 
identical solids and gas velocities. The analysis by 
Matsumoto it rrl. [13] differs from the preceding by 

the attempt to take into account eddy diifusivity. A 
recent alternative approach by Michaelides [ 141 con- 
siders the suspension as a variable density, variable 
heat capacity one-phase fluid. None of these attempts 
have begun with rigorously derived multiphase flow 

equations and all have been limited by simplifying 
assumptions hampering their ability to predict the 
general behaviour of heat transfer coefficients in 

thermally fully developed gas-solids suspension flows. 

3. THERMALLY FULLY DEVELOPED FLOW OF 

A VERTICAL GAS-SOLIDS SUSPENSION 

3. I. Genrral equations 
In an earlier work [I]. a probabilistic Eulerian 

description of tnultiphase flow was developed in order 
to provide a rigorous mathematical description of 
multiphase mixtures. According to this approach, the 
presence and all physical quantities (i.e. immediate 
Eulerian variables) of each phase-are assumed to bc 
random variables governed by laws of probability 
determined by the overall boundary conditions 
imposed on the flow. A given phase p in the mixture 
is then characterized by a probability of presence E,, 
and probabilistic mean Eulerian variables each 01 
them being detined as the expected value of the ran- 
dom immediate Eulerian variable under consider- 
ation. The general probabilistic multiphase flow equa- 
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tions are written in terms of these ‘phase mean 
variables’ which are identifiable to measurable quan- 

tities in the flow. 

When all the particles in the suspension have the 

same physical properties (i.e. density ps, heat capacity 
C,, thermal conductivity 1,) regardless of their size or 
shape, they can be regrouped in a unique solids phase. 
The suspension can then be considered to be a two 

phase mixture, one solids, one fluid. Each of the two 
phases of the mixture has its specific continuity, 
momentum and energy equations. The latter simplifies 

slightly when the temperature levels in the system 
are low enough so that radiation can be neglected 

compared to convective heat transfer. Moreover, 

when only moderate temperature differences exist in 
the flow, the physical properties of the phases can be 

considered as essentially constant. Finally, the work 
done by the internal forces is generally negligible com- 

pared to the power transferred to the suspension. The 
energy equation of a phase p then simplifies to 

The divergence term in the LHS of equation (1) 

accounts for the heat transported by the phase p. It 
includes convective transport in terms of phase mean 

variables (first term within parenthesis) and the 
heat transported by the random movement of the 

phase characterized by the velocity-temperature co- 
fluctuation vector a,. The first term on the RHS (which 
is also a divergence) represents the heat transferred 
by conduction within the phase p; its complete 

expression includes a term (second term within brack- 
ets) depending on the ‘interfacial mean temperature’ 
of the phase. The latter is determined by the interfacial 

jump conditions. Finally the last term QP in equation 
(1) is the heat transferred to the interfacial surface of 

the phase p per unit volume of suspension. 
For a gas-solids two-phase mixture with negligible 

radiation, the following holds : 

Qf=-Qb=-Q (2) 

since the heat received by the particles comes entirely 
from the fluid. This jump condition results from the 
Fact that the particles cannot receive heat from the 

walls or from other particles except by radiation, pro- 
vided that the contacts of particle interfaces with rigid 
surfaces are necessarily point contacts which would 

require an infinite temperature gradient to give a non- 
zero term in the phase mean equations [I 51. Another 
jump condition is the continuity of the temperatures 
at a gas-particle interface. In terms of phase mean 
variables it results in the following equation express- 
ing the identity of the ‘interfacial mean’ tempera- 
tures : 

7’: = T: = T,. (3) 

An additional equation relates the probabilities of 
presence of both phases : 

sr,+r, = 1. (4) 

These phase presence probabilities have been shown 
to be equivalent to the local volume fractions occupied 
by the phases [ 151. 

There is an obvious closure problem related with 

the system made of the energy equations of both 
phases together with the coupling equations (2))(4). 

3.2. Thermally fully developed jowl 
Consider a suspension flowing upward with con- 

stant gas and solids flow rates in a rectilinear vertical 
pipe of circular cross-section. If the thermal boundary 

conditions are axisymmetric, the concentration, vel- 

ocity and temperature fields of both phases will be 

axisymmetric. Moreover, beyond a certain distance 
downstream from the entrance the flow patterns are 

identical in each cross-section of the pipe (i.e. inde- 
pendent of the axial coordinate x). The latter situation 

is called .fill~ deevelopedjow and has been character- 
ized in a previous paper [2]. Molodtsof [15] proposed 

the following definition for the thermally fully devel- 
oped flow of a gas-solids suspension : 

(i) the flow is steady and dynamically fully 

developed ; 
(ii) the shape of the transverse temperature profile 

of each phase is independent of .X ; and 
(iii) for each phase, the probability distribution 

laws of the random temperatures about the phase 
mean temperature are independent of x. 

According to the first condition, the flow is one direc- 
tional and the phase velocities as well as the phase 

presence probabilities are functions of the radial coor- 
dinate r only [2]. From the second condition, the 

following equations can be derived for the fluid and 
solids phases, respectively : 

O,(r) = T,,(x) - T&w, v) (5) 

O,(r) = T,(x) - T,(x, r) (6) 

where T,(n) is the wall temperature and the functions 
&and 0, represent the transverse temperature profiles. 
A similar equation can be written for the ‘interfacial 

mean temperature’ according to the third condition 

e,(r) = Tw(.u) - T,(.v, r). (7) 

Finally the interphase heat transfer term Q is also a 
function of y only as it follows from the third condition 
above. 

The energy equations derived from equation (1) 
respectively, for the fluid and solids thus take the 
following simplified form : 



2668 Y. MOLODTSOF and D. W. Mr;nw 

and 

where Vr and V, denote the non-zero (namely, axial) 

components of fluid and solids velocities, respectively. 
In these equations, all the terms are independent of .y. 

The axial gradient of the wall temperature should. 

therefore, be a constant. The physical significance of 
this necessary condition will be seen below in the heat 

balance. 

3.3. Heat balance and interphase tran@k 

An overall heat balance equation can be derived by 

adding equations (8) and (9), and integrating the sum 
over the cross-section ; using the following boundary 
conditions at the wall [ 151 : 

x, = 0 for r = R (IO) 

da, 
dr 

=0 forr= R 

8, = 0 for r = R (12) 

E: = 0 for r = R (13) 

where R denotes the pipe radius. Equations (10) and 
(1 I) signify that the wall is impenetrable and particle! 

wall contact is limited to discrete points. 

The integration leads to : 

! WGf I’v,C,) 
dTw 
d.r 

= ~ITRv),+ (14) 

where, IV- and W, denote, respectively, the fluid and 
solids mass flowrates and q7, represents the unit heat 

flux provided by the wall to the suspension : 

_ do, 
CPU = -4 Jr forr = R (15) 

Equation (14) shows that meeting the necessary con- 
dition for thermally fully developed flow, namely, that 
there be a constant axial temperature gradient at the 
wall, can only be accomplished if a untform heat,flu.x 

is prorlided between the suspension and the wall. 

According to equation (14). cp,, is a boundary con- 
dition which determines the axial temperature gradi- 
ent for given hydrodynamic operating conditions. 
When the flow field is known, the radial temperature 
fields Or and 0, can be determined by solving equations 
(8) and (9) with boundary conditions given by equa- 
tions (IO)-(13) and cpw, provided that the velocity- 
temperature cofluctuation vectors, the interfacial 
mean temperature and the interphase heat transfer 
term Q are expressed in terms of the basic variables 
(i.e. the phase mean velocity and temperatures). Such 
closure equations could be deduced from a detailed 
modelling of the probability distributions of random 

velocities and temperatures. At the present stage of 
our knowledge. howcvcr, these probability distri- 
butions arc unknown. Ncvcrthclcss. an expression tor 
Q can be derived from the following argument. When 

equation (9) alone is intcgratcd over a cross-section, 
the relationship between the cross-sectional avcragc 

of Q and the axial tcmpcraturc gradient is 

(16) 

This suggests that Q is governed by the same axial 

temperature scale as the phase mean enthalpies. It 

cannot reasonably be assumed, however, without con- 
siderable loss of gcncrality. that the local value Q(r) 

is at any point equal to the average given by equation 

(16). Previous authors assumed that Q is proportional 
to the local solids volumetric capacity flux (p,r,C, VJ 

but this implies. as can be seen by equation (9), that 

there is no radial heat transfer due to the particles. 
The interphase heat transfer Q acts. indeed, as a hcat 
sink in equation (8). Since the heat transferred by the 

gas to the particles has to be s!ored in the solids 
phase prior to radial transfer by conduction within 
the phase and/or random transport in the radial dircc- 

tion. it seems reasonable to consider Q(r) iis being 
proportional to the local volumetric heat capacity of 
the particles (p,m,C,). But the additional factor G(r) 

should be different from V,(r) in order to allow a 
radial heat tlux due to the particles : 

Q(r) = w,C,G(r) 2 (17) 

G(r) has the dimensions of a velocity but differs liom 

V,ir1. 

4. TEMPERATURE FIELDS IN SIMILAR 

PROFILE REGIME 

4. I. Similur projik rcyimr 

In a previous paper [2] it was shown that the dilute 
phase fully developed flow of a vertical gas-solids 
suspension is characterized by self-similar solids con- 
centration and velocity profiles 

z,(r) = z,,f‘(r; U) (18) 

V,(r) = V,(r; U) (19) 

at a constant superficial gas velocity Ii. in fact, the 
profiles in equations (I 8) and ( 19) are asymptotic sokr- 

tions to the general equations when the average .solids 

wlumetric concentrution tends toward zero. The latter 
is defined by : 

Experimental results cited in ref. [2] show that solids 
velocity and ‘reduced’ concentration profiles (i.e. con- 
centration profiles divided by the mean concentration) 
which are independent of solids loading have been 
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reported by many authors for average volumetric par- 
ticle concentrations up to a few per cent: The similar 
pro@e regime seems, therefore, to be a typicat feature 
of ‘dilute’ phase flow. In this regime, the gas velocity 
profiles deform with increasing solids concentration 
according to the following asymptotic form : 

k’,(r) = V:‘(r; U)iol,(r; ~)~~(~; u)+o(Gy). (21) 

In fact, equations (IX), (19) and (21) are MacLaurin 
series expansions limited to the first order in terms of 
increasing powers of the average solids concentration. 
In general, the difference between the reference flow 
variables (e.g. V”) and the suspension flow variables 
(e.g. V) are as a result of modifications due to the 
presence of the particles. 

In equation (21). the first term in the RHS is the 
velocity field of the reference jaw (i.e. the velocity 
profile of the gas flowing alone in the same pipe with 
the same superficial velocity). The basic hypothesis 
used in the previous hydrodynamic analysis f2] is that 
all Eulerian variables of the fluid tend toward their 
values in the reference flow when the average solids 
concentration tends toward zero. For the temperature 
fields, the same should hold for both the axial and 
radial profiles. The energy equation for the reference 
flow is 

prcl- 

where the “’ superscript designates the reference flow 
variables. The temperature fields are defined by the 
wall heat flux. Consequently, the temperature field of 
the reference flow should be that obtained with the 
same thermal boundary conditions as those imposed 
on the suspension : the same inlet temperature and the 
same wall heat flux cpW. The limiting form of equation 
(15) is, therefore 

de; 
rp, = -if--- 

dr 
for r = R. 

The heat balance equation can be obtained by letting 
W, = 0 in equation (14) 

The axial temperature gradient of the reference flow 
differs, then, from that of the suspension by a scaling 
factor which can be expressed using the following 
ratio : 

WSCS 
I-=.=. 

r f 
(25) 

Now, if K and K” denote, respectively, the axial tem- 
perature gradients for the suspension and the refer- 
ence flow, considering equations (14), (24) and (25), 
one has 

(26) 

In similar profiles regime I tends towards zero as the 
average concentration tends towards zero. Normally, 
in gas-solids suspensions the order of magnitude of 
r/a, is however, about 103. 

4.3. Asymptotic form of the energy equation 
In order to give to equations (8) and (9) a simpler 

form the following variables will be defined to regroup 
all the radial heat transfer terms for the fluid and the 
solids, respectively : 

Energy equations (8) and (9) can be rewritten using 
these new variables and substituting the expression 
given by equation (17) for Q. If the equations then 
obtained are in turn divided by K, one obtains 

(2% 

(30) 

An analogous equation can be derived for the refer- 
ence flow 

(31) 

which is the limiting form of equation j29) as the 
average concentration tends toward zero. 

Consider now the MacLaurin series expansion of 
G limited to zeroth order terms 

G(r, c(,, U) = G ‘(r ; U) + 0(a,). (32) 

If this expression is substituted for G in equation (30) 
and second order terms are neglected, dividing 
through by z leads to an equation in which the LHS 
and the second term on the RHS are independent of 
the average solids concentration (this follows from 
equations (18) and (19)). Therefore, the as~ptotic 
form of the compound {J(Ku,) is independent of Cc, 
Now, if equation (28) is considered, it appears that 
the solids phase energy equation allows as solutions, 
asymptotic temperature profiles of the form 

It should be noted that, the first term on RHS of 
equation (33) is not exactly the first order term of a 
MacLaurin series expansion since I depends on <. 



But as the ratio of these two latter variables has an 
order of magnitude much greater than I the resulting 
second order term cannot be neglected. 

An analogous result can be derived for the gas 

temperature field from equations (29) and (31). Sub- 
tracting the second from the first one gives 

(35) 

The asymptotic form of the LHS of the above equa- 
tion can be substituted from equation (21). Again. 

neglecting the second order terms and dividing 
through the resulting equation by $ gives 

As the first and last terms in equation (36) are inde- 

pendent of the average concentration, the derivative 
is also independent of a,. Consequently, the following 
asymptotic form can be deduced : 

(The term K” has been introduced on the RHS of 
equation (37) for dimensional considerations.) Accord- 
ing to the definition of the radial flux term (equa- 
tion (27)) the temperature and cofluctuation terms 
for the fluid should be of the following form : 

Consequently, equations (35), (38) and (39) satisfy 
equation (37) and are thus, possible solutions of the 

energy equation of the gas. Formally, these asymp- 
totic profiles are slightly different from those of the 

flow patterns defined by equations (18), (I 9) and (21) 
by the presence of an additional scaling factor (I -t I-) 
which accounts for the increase of the volumetric heat 
capacity of the suspension with increasing loading. 
The Eulerian variables of the solids phase are& 
however. still self-similar. 

5. CONSEQUENCES FOR THE HEAT 

TRANSFER COEFFICIENT 

As shown above, the temperature profiles defined 
by equations (33), (34) and (38) are ~~ss~~~~e asymp- 
totic solutions for the energy equations in the similar 
profiles regime. The derivation of these results gives 
no additional information about the functions making 
up these expressions. It should be recalled, in this 
connection, that, even the temperature field of the 
reference flow is ‘unknown’ from a theoretical point 
of view. Nevertheless, the similarity properties of these 

asymptotic profiles can be used to derive an equation 
predicting the variations of the wail-to~susp~nsi~~n 
heat transfer coefficient with solids loading. 

The heat transfer coefficient expresses the ratio 01 
the wall heat flux to a reference temperature diffcrcnce 
AT. For the latter several difl’ercnt dctinitions 

(reviewed in ref. [16]) have been used by previous 
authors. When considering transfer from the wall to 

the suspension (i.e. the mixture), the most useful dcfi- 
nition of AT would be the difference between the local 

wall temperature T,$ and the suspension mixed mean 
temperature, the latter being proportional to the mix- 

turc’s enthalpy. We shall, therefore, define AT,,, as 
follows : 

AT,,, = ‘J-,<(.d - T,,,,,(.‘;). (40) 

This temperature difference is independent of .Y and 

can be computed using equations (5) and (6) and the 
conventional definition of the mixed mean tempera- 
ture : 

+p,C,a, V,O,] dr. (41) 

Alternative de~nitions for ATcan be obtained using, 
respectively, the mixed mean temperatures of the fluid 
or the solids phases: AT, and AT,. These three ref- 
erence temperature ditferences arc related by the 
following equation : 

W,CfAr,+ W,C,AT, = ( WfCr+ W,C,)AT,,. (42) 

These temperature differences can be expressed, using 
asymptotic forms of the ~o~lcentration, velocity and 
temperature fields defined in equations (18). (IO). 

(2l), (33) and (38). Neglecting the second order term 
gives 

(43) 

67; = ATo ‘2. 
i > ,+I- 

All the ATs are, thus, proportional to the rcferencc 
temperature difference AT” of the reference flow. 
(AT” is the limiting form of AT, when CI, approaches 
zero.) The proportionality fhctors &pew/ e.wlu.Gely 
on the hpirodynamic operatiny con&litions. since the 

terms denoted by As in equations (43) and (44) are 
dimensionless shape factors accounting for the effect 
of the non-uniformity of the profiles 
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A& f(r);$dA. s (47) 
A s 

5.2. Asymptotic equation jtir the heat transjbr 

coeficient 
With the help of equations (41)-(47) an asymptotic 

equation expressing the variations of the heat transfer 
coefficient with the solids loading can be derived. The 
wall-to-suspension heat transfer coefficient h, is 

defined as follows : 

h,, = 2. 
m 

(48) 

It can be expressed in terms of the heat transfer co- 
efficient ho of the reference (one phase) flow which is 

defined in an analogous manner 

h,=s. 

This equation can be written as follows : 

h, (l+r)* 

h, = FaT+bT’) 

where the coefficients CI and b are arithmetic com- 

binations of Af”, 121 and A,, and as such, are compound 
shape factors determined by the hydrodynamic 

characteristics of the flow. 

6. DISCUSSION 

Equation (50) is a general result describing the vari- 
ation of the suspension heat transfer coefficient as a 

function of solids loading at constant superficial gas 
velocity. The primary hypotheses leading to its deri- 
vation are : 

(i) The existence of a flow regime where solids vel- 
ocity and concentration profiles, while non-uniform 
through the pipe cross-section, are self-similar as 
solids loadings increase. There is significant direct evi- 

dence of this at low solids concentrations in the litera- 
ture from local measurements and indirect evidence 
exists through pressure drop measurements as dis- 
cussed in ref. [2]. 

(ii) The axial heat flux is constant. If a different set 
of boundary conditions are imposed on the flow, the 
flow will not be thermally fully developed as indicated 
in equation (14). 

(iii) The existence of self-similar solids temperature 

profiles, that is profiles whose form is arbitrary but 
which remain the same as solids loading increases. 

There is little direct evidence either to support or 
refute this in the literature but this hypothesis can 
be indirectly confirmed by experimentally verifying 
equation (50). 

Equation (50) allows the entire impact of the com- 
plex hydrodynamics of the flow on the heat transfer 
behaviour to be summarized by two parameters a 
and h. These parameters depend only on the reduced 

velocity, concentration and temperature profiles. The 
profiles themselves however may be dependent on a 

variety of factors characterizing a given system (par- 

ticle size and type, pipe diameter, etc.) as well as the 
superficial gas velocity. Without a detailed knowledge 
of these profiles, a and b cannot be calculated directly 
and remain to be determined experimentally. In order 
to facilitate this determination, equation (50) can be 

re-arranged to give equation (5 1) 

Plotting the LHS of equation (51) as a function of 

F will allow a and b to be determined from the slope 
and intercept. Figure 1 shows data from Depew and 

Farbar [4], and Tien and Quan [8] plotted in this 

way. At constant gas velocity, the relationship is linear 
indicating that the flow regime characterized by self- 

similar profiles and, therefore, equation (50) succeeds 
in predicting the heat transfer behaviour. These data 

also show that the same values of a and h hold for 

several different gas velocities. This is not predicted 
directly from the analysis leading up to equation (50) 

as, normally, a and b would vary as gas velocity varies. 
The fact that they are constant in Fig. 1 indicates a 
relative insensitivity, at least in this case, over a narrow 
range of gas velocities. 

Equation (50) allows for six basic types of vari- 

ations of heat transfer coefficient as a function of 
solids loading ratio. This is illustrated in Fig. 2 with 
the associated ranges of values of a and b plotted in 
Fig. 3. Three of the types of variations (Types I, 5 

and 6) give coefficients which tend to values less than 
that of the gas alone at the same superficial gas vel- 
ocity as solids loading is increased. The other three 
(Types 2, 3 and 4) lead ultimately to higher values. 

Two of the variation types (Types 4 and 5) lead to 
initial decreases in the heat transfer coefficients, pass- 

age through a minimum, followed by increases there- 

FIG. 1. Comparison between experimental data from Tien 
and Quan [8] and Depew and Farbar [4] and equation (5 1). 
m 200 pm glass, Reynolds number = 13 500. + 200 pm glass, 
Reynolds number = 15 000. 0 200 pm glass, Reynolds num- 
ber = 27 500. A 200 pm glass, Reynolds number = 30 000. 
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coeficient with loading ratio in the similar profile regime 

depending on the values of a and h. 

a 1-l” 
FIG. 3. Grid of possible values of a and h corresponding to 

the types of variation shown in Fig. 2. 

after. One variation increases monotonically with 
loading ratio (Type 3); another declines mono- 
tonically with increasing loading ratio (Type 6). As 
indicated earlier, each of these behaviours (with the 
possible exceptions of Types I and 2) have been 
reported experimentally : in summaries of reported 
data, both Maeda et ul. [17] and Boothroyd and 
Haque [Is] show numerous examples of these kinds 
of behaviour. 

7. CONCLUSIONS 

Probabilistic multiphase flow equations have been 
used to analyse heat transfer between the pipe wall 
and flowing gas-solids suspensions. This analysis has 
shown that self-similar temperature profiles constitute 
solutions to the energy equations. These solutions, in 
turn, allow the derivation of the general form of the 
variation in heat transfer coefficient as a function of 
solids loading in gas-solids suspension flow. The gen- 

cral variation, which depends on only two parameters 
which characterize the detailed hydrodynanlic~ of the 
flow, is consistent with data available in the litcraturc. 
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TRANSFERT THERMIQUE SUSPENSION-PAR01 EN RCGIME DES PROFILS 
SEMBLABLES 

R&sum&Une etude theorique du transfert de chaleur entre une suspension gaz-solides et la paroi du tube 
qui la vehicule est effect&e a l’aide des Equations GCnCrales Probabilistes des ecoulements polyphasiques. 
On en deduit qu’a l’instar des profils semblables de concentration et de vitesse qui satisfont asymptotique- 
ment aux equations de I’ecoulement, les equations de I’energie admettent comme solution des profils 
semblables de temperature, en ecoulement dild. Cette forme de solution permet, ensuite, d’etablir l’ex- 
pression get&ale de la loi de variation du coefficient d’echange de chaleur avec le taux de charge de la 

suspension. Cette expression est en excellent accord avec les rtsultats experimentaux. 

WiiRMEUBERGANG ZWISCHEN EINER WAND UND EINER SUSPENSION IM 
BEREICH AHNLICHER PROFILE 

Zusammenfasaung-Wahrscheinlichkeitsgleichungen fur die Mehrphasenstrijmung werden auf die Unter- 
suchung des Warmetibergangs zwischen einer Rohrwand und einer Gas/Feststoffsuspensionsstromung 
durch das Rohr angewandt. Die Untersuchung zeigt, da13 in der gleichen Weise wie die selbstahnlichen 
Konzentrations- und Geschwindigkeitsprofile Liisungen fur die hydrodynamischen Gleichungen ver- 
dtinnter Suspensionen sind, such die selbstahnlichen Temperaturprofile Liisungen der Energiegleichungen 
darstellen. Diese Lijsungen wiederum erlauben es, den WZirmetibergangskoefenten fur die Suspension 
in allgemeiner Form als Funktion der FeststoBbeladung der Gas/Feststoffsuspensionsstromung abzuleiten. 

Die berechnete Abhangigkeit stimmt mit den in der Literatur verfiigbaren Versuchsdaten iiberein. 

TEI-IJIOTIEPEHOC OT CTEHKH K B3BECH B ABTOMOAEJIbHOM PEXHME 

Asmo~~Beponruocrribxe ypaartemin hmoro~$aatrbrx reverr& ricnonbaymrc5r LuIIl ariamr3a rennone- 
peuoca Memy mXiKO% rpy6r~ H Te%eImeM B3Beai t-a3 - TBepme TeJIa B TpyBe. nOJI~eHHbIe B pesynb- 

TaTe pemeHHn II~~I$UJIH rtoauempawfi, cKopocTefi B TemepaTyp nmm~cn aBToMo~enbiibIbm. 3rrr 

peIUeHH%l,B CBOH) O¶e~ab,UO3BOJlXEOT OllpeneJIHTb TeIIJ-IOllepeHOC ICasl &'HKIIEM)COAepXaHHX TBepAbE 

hen B TegeHmx s3necefi. Pe3ynbTam pavmoe CmnacymTcn c m4emuwaicn B mepaType srcnepm 


